Pharmacological Characterization of SDX-7320/Evexomostat: a Novel Methionine Aminopeptidase Type 2 Inhibitor with Anti-Tumor and Anti-Metastatic Activity
Methionine aminopeptidase type 2 (MetAP2) is a ubiquitous, evolutionarily conserved metalloprotease fundamental to protein biosynthesis which catalyzes removal of the N-terminal methionine residue from nascent polypeptides. MetAP2 is an attractive target for cancer therapeutics based upon its over-expression in multiple human cancers, the importance of MetAP2-specific substrates whose biological activity may be altered following MetAP2 inhibition, and additionally, that MetAP2 was identified as the target for the anti-angiogenic natural product, fumagillin. Irreversible inhibition of MetAP2 using fumagillin analogs has established the anti-angiogenic and anti-tumor characteristics of these derivatives, however, their full clinical potential has not been realized due to a combination of poor drug-like properties and dose-limiting CNS toxicity. This report describes the physicochemical and pharmacological characterization of SDX-7320 (evexomostat), a polymer-drug conjugate of the novel MetAP2 inhibitor (MetAP2i) SDX-7539.